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An electric arc in a transverse magnetic field: 
a theory for low power gradient 

By W. T. LORD 
Royal Aircraft Establishment, Farnborough, Hampshire? 
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A uniform electric arc column is held at  rest against an imposed low-speed flow 
perpendicular to its length by an applied magnetic field transverse to both the 
arc and the flow. The situation is represented mathematically by two regions 
separated by an isothermal boundary, the arc periphery, across which certain 
gas properties change discontinuously. It is assumed that the arc has low power 
gradient so that the Nusselt number is small compared with unity. The Reynolds 
number is then small also and the methods of the theory of flow at low Reynolds 
number are used to obtain solutions for the temperature, magnetic field, velocity 
and pressure inside and outside the arc. It is found that the periphery of the arc is 
a circle and its radius is determined by heat transfer. The flow near the periphery, 
and the drag of the arc, are found to depend on a final boundary condition at  the 
periphery, the form of which is not yet clear. Several examples of possible flow 
patterns are given, and it is shown that the arc may be likened to a slippery 
porous body for which the slipperiness and porousness are governed by the final 
boundary condition. The electric and magnetic characteristics of the arc are 
derived and shown to be amenable to examination by experiment and to em- 
pirical extension for arcs of higher power gradient. 

1. Introduction 
The problem of an electric arc in a cross-flow and a transverse magnetic field, 

surveyed recently by Myers & Roman (1966), has been of physical and engineer- 
ing interest for many years, and it has for long been apparent that it may be 
treated mathematically through the equations of continuum magneto-fluid- 
dynamics with the inclusion of heat transfer effects. However, no solutions giving 
detailed distributions of temperature, velocity and pressure inside and outside 
the arc have been reported. This situation is in contrast to  the case of arcs in 
axial flow in constrictor tubes, for which increasingly detailed solutions have 
been obtained since the analysis of Stine & Watson (1962). The main role of 
continuum theory in the cross-flow problem has hitherto been to provide simi- 
larity parameters to aid the analysis of experimental results for straight columns 
(Lord 1964; Yas’ko 1964; Dautov & Zhukov 1965) and to yield the unconventional 
explanation of the retrograde motion of curved columns given by Schrade 
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(1965). In this paper an idealized form of the problem is considered and a detailed 
solution is given. The solution is thought to be sufficiently complete to serve as a 
prototype for subsequent investigations. 

The problem is illustrated in figure 1.  A uniform electric arc column is held at 
rest against an imposed subsonic flow perpendicular to the column by an applied 
magnetic field which is transverse to both the undisturbed flow and the arc. The 
total current through the arc I is in the z-direction and is maintained by a uniform 

Arc 
periphery 

FIGURE 1. Main parameters of problem. 

applied electric field (or voltage gradient) E,. The undisturbed flow is in the 
x-direction and has a velocity U which is small compared with the speed of sound 
appropriate to the ambient pressure p ,  and the ambient temperature T,. The 
uniform magnetic field B, is applied in the y-direction and this has the effect of 
holding the arc at  rest. To be precise, we view the arc from a frame of reference 
at  rest with respect to the point of maximum temperature within the arc so that 
this point, the arc centre, stays fixed for all values of U and I ,  and for all values of 
p ,  and T,. However, the effective size of the arc does depend on U and I and on 
p ,  and T,. So, too, do the values of E ,  and B,; we refer to the result for E,  in 
terms of I ,  U, p w  and T, as the electric characteristic of the arc and to the result 
for B, as the magnetic characteristic. It is implicit in this description of the 
problem that, for a given gas, the electric and magnetic characteristics are 
uniquely determined by the current, the flow velocity and the ambient pressure 
and temperature. 

A mathematical model is constructed by first assuming the existence of a 
temperature 9, such that the electric conductivity is identically zero for all 
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temperatures below pand is non-zero for all temperatures above 9; this tempera- 
ture $, regarded as an empirical constant for a given gas, serves to define the 
periphery of the arc as a given isothermal and thus separates the inside of the arc 
from the outside. Secondly, it  is assumed that the electric conductivity, density, 
viscosity and ratio of specific heat to thermal conductivity take constant values 
outside the arc which are related to the ambient and peripheral conditions, and 
constant values inside the arc related to conditions at  the periphery and the arc 
centre. This mathematical model is clearly artificial, but successful theories for 
arcs in axial flow have been based on the concept of the periphery and the 
other simplifications are defended on empirical grounds. Indeed, the theory is 
specifically designed to be used in conjunction with experimental measurements. 

The introduction of the arc periphery and the assumption of constant proper- 
ties outside and inside the arc are not sufficient to define a problem which can be 
solved in its entirety for arbitrarily large values of current. In  this paper we 
make the extra assumption that the current is sufficiently low for the power input 
per unit length to the arc (the power gradient) E,I to be small compared with a 
representative difference of heat-flux potential between the arc and the sur- 
rounding flow. In  the absence of radiation from the arc, which may be taken for 
granted for arcs of low power gradient, E ,  I is equal to the amount of heat being 
conducted across the arc periphery (since convection through a closed isothermal 
boundary does not affect the overall energy balance if there areno somces or sinks) 
and hence the Nusselt number is small compared with one. This is then taken to 
imply that the size of the arc is small in the sense that the Reynolds number is 
small compared with one, and hence it is possible to develop a theory of the type 
familiar for flow at low Reynolds number (Illingworth 1963; Lagerstrom 1964). 
Here we obtain Oseen solutions outside the arc and Stokes solutions inside the 
arc and then seek to join the external and internal solutions by satisfying 
appropriate boundary conditions at  the arc periphery. 

The joining of the solutions for the temperature is straightforward but the 
joining of the solutions for the flow is not. The difficulty lies in specifying enough 
appropriate boundary conditions at the arc periphery to make the flow unique, 
and the form of the final condition is open to question. The attitude taken in this 
paper is that, on the assumption that it is correct to expect a unique flow pattern 
for a given set of values of current, flow velocity and ambient pressure and 
temperature, it is reasonable that the final boundary condition should not be 
identifiable at this preliminary stage in the study of the problem. In view of the 
artificial nature of the periphery and its definition as an isothermal of empirically 
derived temperature there seems no reason why the final flow condition should 
take a simple form. Accordingly, rather than apply a speculative condition, the 
final boundary condition is left open in the analysis and several examples of 
possible flow patterns are given and their consequences described. However, it is 
suggested that the form of the final condition should come from an experimental 
study, and in particular it is shown how a comparison of the theoretically de- 
rived arc characteristics with experimentally measured characteristics could shed 
light on the missing condition. 

44-2 
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2. Formulation of mathematical problem 
2.1. Equations 

The following quantities are taken to be uniform outside and inside the arc and 
discontinuous at the arc periphery: the electric conductivity CT, the density p, 
the viscosity 7, and the ratio ( cp /k )  where cp is the specific heat at constant pressure 
and Ic is the thermal conductivity. We assume that Ic is a function of temperature 
T only and define the heat-flux potential #by k = d$/dT with # = 0 when T = 0; 
the ambient and peripheral values of #, corresponding to T, and ?, are denoted 
by #, and 6. We treat # as the operative temperature variable. The assumption 
of uniform (c, /k) means that the enthalpy is linear in 9. The equations of steady 
magneto-fluid-dynamics for a fluid of constant properties (Shercliff 1965), may 
then be written (in the SI system of units) as: 

continuity equation: v.v = 0;  (1) 
momentum equation: 
energy equation : 
Maxwell’s equations : V x B  = p j ,  

Ohm’s law: 

pv.Vv = -Vp + qV2v + j x B; 
pv.V[(cp/k)# + &vz] = E. j +V2q5; 

V . B  = 0; 

j = ~ ( E + v x  B), 
where v is the velocity, p the pressure, j the current density, B the magnetic 
field, E the electric field and p the magnetic permeability of free space (a di- 
mensional constant equal to 477 ohm second/metre). The effects of viscous 
dissipation and radiation in the energy equation and the effect of Hall current 
in Ohm’s law are neglected because they are expected to be small in the case of 
an arc of low power gradient and because the simplifications thus afforded are 
essential to the subsequent development of the solutions. 

In  the present two-dimensional situation created by the assumption of a 
uniform arc column, E is assumed to have only one component E, which is 
constant by Faraday’s law V x E = 0 and therefore equal to Em, the applied 
electric field. Also it is assumed that v and B have no x-components and do not 
depend on z. Then j has only the component j ,  which is independent of z. It is 
possible by virtue of (1) and (5) and the two-dimensionality of the problem to 
introduce a velocity stream functiony and a magnetic stream function A ; in order 
that Y is the velocity stream function both inside and outside the arc we define it 

( l a )  pv,=-, pug= --; pv =-- pus= -- 
aY ax r a e y  ar 

(we quote relations in both rectangular co-ordinates x, y and polar co-ordinates r, 
8 with the origin at  the centre of the arc, since we shall use both sets of co- 
ordinates subsequently); the magnetic stream function is identical with the 
z-component of the magnetic vector potential A defined by B = V x A, V. A = 0, 
and satisfies the relations 

so that LW ay 1 a y  ay 
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It is convenient to use (5 a )  and write equations ( 2 ) ,  ( 3 ) ,  (4 ) ,  ( 6 )  as 
PV . VV = - V p  +- 7V2v +j,VA, P a )  

pv .V[(c , /k )$+&~~]  = E,j,+V2$, (3a )  
V 2 A  = -,~!j~, ( 4 4  

j, = (T(E,-v.VA). ( 6 4  
It is not worth while replacing v by 'Y in these equations at this stage. 

The mathematical problem is to solve (Za) ,  (3a) ,  (4a )  and (6a )  outside the 
arc and inside the arc using the values of the constants as specified below: 

outside the arc (q5 < $): CT = 0, p = p2, 7 = v2, (c,/k) = ( c J ~ ) ~ ;  

inside the arc ($ > 6): (T = C T ~ ,  p = pl, 7 = rl, (c,/k) = (c,/k),; } (7)  

and then to join these two solutions by satisfying suitable boundary conditions 
at the arc periphery. 

2.2. Boundary conditions 
The imposed boundary conditions are $ = q5,, B, = 0, B, = B,, v, = U ,  
v, = 0, p = p ,  at r = 00, and Vq5 = 0 at r = 0 since the origin is taken at  the 
point of maximum temperature. The conditions applied at the periphery 
(later shown to be a circle) preserve the continuity of heat-flux potential q5 
(and hence temperature T) and heat flux Vq5, the continuity of magnetic stream 
function A and magnetic field B, and the continuity of tangential velocity v8, 
mass flux pv, (and hence velocity stream function Y), tangential stress rr8 
defined by rr8 = v(av8/ar - v8/r + av,/r 80) and normal stress ( - p  + 7,) where 
r, = 27avJar. Note that the Maxwell stresses are continuous, since the com- 
ponents of the magnetic field are continuous. 

The conditions on the flow at the periphery are physically consistent from a 
continuum viewpoint and are based on experience with various combinations of 
conditions which shows that they lead to plausible flow patterns satisfying appro- 
priate integral relations. However, they do not lead to a unique flow pattern for 
a given set of values of current, imposed velocity and ambient pressure and 
temperature. One further boundary condition on the flow at the periphery is 
required to achieve uniqueness, but since it is not clear what form this condition 
should take it is left open. 

2.3. Approximate equations for an  arc of low power gradient 
Outside the arc (region 2) we make the Oseen approximation in which the im- 
posed velocity is used instead of the local velocity in the convective term in the 
energy equation and in the factor multiplying the velocity gradient in the inertial 
term of the momentum equation. When the appropriate constants from (7) are 
used, equations (2a) ,  (3a ) ,  (4a ) ,  (6a )  become 

p2 u(av /ax)  = - v p  + T2 V ~ V ,  

P2 u(c,/w2 (a$/ax) = V 2 b  
(2b)  
(3b)  

V 2 A  = 0, (4b)  
j, = 0. (6b) 
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The equations from which v, p ,  $ and A must be derived are now uncoupled and 
linearized. 

Inside the arc (region 1) we make the Stokes approximation, in which the con- 
vective term in the energy equation and the inertial term in the momentum 
equation are neglected, together with the assumption that the induced electric 
field v . V A  is small compared with the applied field Em. When the appropriate 
constants from ( 7 )  are used, equations ( 2 a ) ,  (3a) ,  ( 4 a ) ,  ( 6 a )  reduce to 

0 = -Vp +y1V2v +j,VA, 

0 = Emj,+V2#, 

V2A = - / h j z ,  ( 4 4  

j, = a;E,. (6c) 

The form ( 6 c )  of Ohm’s law is largely responsible for the simple solutions derived 
subsequently. By neglecting v.VA compared with E,  the last obstacle to 
completely uncoupled equations is removed, and so is a vorticity interaction 
which is a chief concern of classical magnetohydrodynamics (Shercliff 1965). 
For, since g1 is constant, equations ( 2 c )  and ( 6 c )  lead to 

0 = - V ( p - v ~ E , A ) + ~ 1 V 2 v ,  ( 2 4  

( 2 e )  

V2$ = -u,E&, ( 3 4  

V 2 A =  - ,UC~E,.  ( 4 4  

and hence by taking the curl of this equation and using Y from (1 a)  we have 

V4Y = 0. 

Also, when ( 6  c )  is used equations (3  c )  and ( 4  c )  become simply 

By these approximations the problems for the temperature and the magnetic 
field are separated from each other and from the problem involving the velocity 
and the pressure. We therefore treat them separately in the following sections. 
In the derivation of the solutions we follow the procedure, which appears to be 
basic in dealing with arc problems, of treating heat transfer as the primary feature, 
since it determines the size and shape of the arc, and regarding the situation 
outside the arc as controlling that inside the arc. 

3. Temperature 
3.1. Xolutions outside and inside the arc 

Outside the arc q5 must satisfy equation (3  b) .  A general solution of this equation 
exists in the form of an infinite series involving modified Bessel functions but 
since we believe, following the view of Proudman & Pearson (1957), that the 
nature of Oseen’s approximation makes it superfluous to seek high-order solu- 
tions we consider only the first-order solution. When the condition as 
r + 00 is satisfied this solution may be written as 

# = #a+ (&/2n) exp (~rzL-cos@K,(~r,S), (8) 
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where KO is the modified Bessel function of the second kind of zero order, [ is a 
non-dimensional Oseen variable defined by 

c = P2 Ur/27,, (9) 

Pr, is the Prandtl number defined by 

and Q is a constant. We assume that Pr, is O(1). When [ is large compared with 
unity the appropriate asymptotic form of q5 shows that the uniform temperature 
at  infinity is approached through a laminar thermal wake and identifies Q as the 
enthalpy flux in the wake 

Q = p2 (+-$-m)dY* 
--m 

We now assume that 6 is small near the arc. When 6 is small compared with 
unity the solution (8) for 4 may be written as 

where y is Euler’s constant and e y  = 1.781 ; this has the form of a pure conduction 
solution in which the temperature depends only on the radial co-ordinate, the 
heat flux vector therefore has only a radial component, and the total amount of 
heat conducted across any circle is constant and equal to Q. Since the arc peri- 
phery is defined as an isothermal it follows that the arc periphery is a circle. If  we 
denote the radius of the arc periphery by r = & and introduce the Stokes variable 
5 defined by 

then, from ( l l ) ,  (9) and (12)’ near the arc q5 may be expressed as 

q5 = & - ( Q /  2n)log(&eYPr,Re2E)+ ..., (13) 

where the Reynolds number Re, is defined by 

Re, = p2 U2&/q2. 
By putting q5 = 6 (a constant, assumed to be deducible from experiments) at  
5 = 1 in equation (13) and rearranging we obtain 

1 - Q 
4n($- - log (*e~Pr,Re,)-~’ 

Equation (1 5) is the basic relation expressing the heat transfer from the arc to 
the flow. It is the same as that for the heat transfer from a hot solid circular 
cylinder at low Reynolds numbers, first given by Cole & Roshko (1954)’ since 
Q/4n($-+m) = 4Nu where the Nusselt number Nu is defined by 

N u  = (Q/2n&) (2fi)/($- 
If we now introduce the notation 

S = ( i e r  Pr, ReJ2, 
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then we have S = exp ( -  l/N). (18) 

This is identical with the external heat transfer relation for a wall-stabilized 
static arc in a circular tube (Lord 1964) for which S = (B/P)2 if i: is the radius of 
the tube. It therefore follows by using (17) and (14) that, as far as the temperature 
and heat transfer near the arc are concerned, the arc in an imposed flow of low 
Reynolds number is equivalent to a static arc in a circular tube of radius i: given 

We regard i: given by (19) as the fundamental length scale in the present prob- 
lem. It replaces the expression suggested by Lord (1964), which however differs 
from it only by an empirical constant factor. 

Inside the arc, g5 must satisfy equation ( 3 4  and since the arc periphery is a 
circle and the heat flux vector just outside the arc is radial, the appropriate 
solution for 9, which is non-singular at  r = 0 and satisfies q5 = 4 at 6 = 1 is 

3.2. Boundary conditions at the arc periphery 
The stipulation that q5 = 4 at the arc periphery in both the external and internal 
solutions is part of the joining process at  the periphery, which is completed by 
equating the values of dg5/dr on each side of the periphery; this leads to the result 

It then follows from (20) and (21) that q50, the value of q5 at the centre of the arc, 
is given by 

which may be rewritten as (g50 - f$)/($- g5m) = N .  (23) 

Therefore, since N is small compared with one, the difference of heat-flux po- 
tential between the centre of the arc and the periphery is small compared with 
that between the periphery and the ambient flow. Hence, in the present approxi- 
mation the value of all gas properties within the arc, with the important excep- 
tion of the electric conductivity as discussed later, may be taken at  the peripheral 
temperature. Therefore, the constancy of p, 7 and (cJk) inside the arc now be- 
comes a valid approximation instead of an assumption. 

The result (21) may be put in a simpler and more familiar form by noting that, 
from Ohm's law (6c), the total current I is given by 

A 

I = E , ( T ~ I T R ~ .  (24) 

Hence, from (21) and (24), E J  = Q ,  (25) 

which, in the absence of radiation, is a general result independent of the form of 
approximation used for the electric conductivity. 
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4. Magnetic field 
Outside the arc the magnetic stream function A satisfies equation (4b)  and the 

appropriate solution satisfying the boundary conditions B, = 0, Bv = B, a t  
r = co is that given by the superposition of the applied field and the induced 
field due to an infinite cylindrical conductor: 

A = constant - (pGI/Zz) logr - B,r cos 8. (26) 
By taking the induced magnetic stream function to have the value Â  at the arc 
periphery, equation (26) becomes, in terms of the Stokes variable 6 (since the 
Oseen variable 5 has no significance for the magnetic field), 

A = Â  - (p I /Zn)  log 6 - Bm& cos 8. (27) 
Inside the arc, A satisfies equation ( 4 4  and, since g1 is constant, the appro- 

priate solution is given by the superposition of the applied field and the induced 
field due to an infinite cylinder of uniform current density: 

A = constant-&,uE,cr'1r2-BB,rcos8. (28) 
By making A and both field components continuous at the periphery it follows 
from ( 2 7 )  and (28) that inside the arc 

A = Â  + ( p 1 / 4 ~ )  (1 - c') - B,& cos 8. (29) 

5. Velocity and pressure 
5.1. Xolutions outside and inside the arc 

Outside the arc the velocity and pressure satisfy equation (Zb) ,  the general 
solution of which, given by Lamb (1932), is 

v = V@ + (rzlpz U)OX - xi, 
P = Pa, - Pz u{(a@/ax) - U},  

(30) 

(31) 

VZCD = 0, (32) 

where i is a unit vector in the x-direction and CD and x satisfy the equations 

From the general solutions of equations (32) and (33) which exist in series form 
we need consider only the first-order solutions: 

@ = U[rcosB+plogr+~ ,cos8 / r ] ,  (34) 

x = ( D / Z V z )  exp (fcos 6) K,(5), (35) 

where p, p1 and D are dimensional constants and 5 is the Oseen variable given by 
(9). When 6 is large compared with unity the asymptotic form of x shows that 
there is a laminar viscous wake behind the arc and identifies D as the drag on the 
arc : r +m 



698 W. T .  Lord 

When c is small compared with unity equation (35) may be approximated by 

x = - (D/2ny2) (1 + c cos 8) log (freyf;) + . . ., (36) 

where, in order to obtain a consistent approximation for the velocity components, 
it is necessary to include an extra term compared with the corresponding approxi- 
mate form for 4. After some manipulation of (30), (la), (34) and (36) the stream 
function !I? may be shown to be given, for small 5, by 

By stipulating that there is no net source- or sink-effect in the arc we obtain 

/i’ = D/2np2 U2,  

and hence from (37), (38) and (9) 

In  terms of t = c/$ Re2, Y becomes 

We now introduce the non-dimensional parameter A defined by 

A = D/8nv2 U ,  (41) 

noting that, in termsof the drag coefficient C,, = D/&p2 Uz(2& A = CD2Re2/16n; 
A is small compared with unity. If we now write 

= -A&%, (42) 

(43) 
1 

log (Qe’Re2)-2+ 2 - d’ 
A = ~ _ _ _ _ ~ ~  

the result for Y becomes 

(44) 

The expression for the external flow near the arc, which is recognizable as the 
appropriate solution of the Stokes equations, therefore involves two arbitrary 
parameters, here denoted by c and d,  A being related to d by (43); c and d are not 
restricted to O( l ) ,  and Y / p 2  U& is not restricted to O(A), although this is most 
often the case. The parameter d is convenient for expressing the stream function 
in a simple form, but a more convenient parameter from the point of view of the 
expression of the drag is 6 defined by 

d = 1-6, (45) 

for then the non-dimensional drag parameter A is given by 

1 A =  
log ( teY Re2)-2 + 1 + 6 
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and when S = 0 this reduces to the expression for the drag of a solid body. It is 
usual in low Reynolds number theory to write (Lagerstrom 1964) 

8 = l/[+-log (Qe~Re,)l 

and in terms of c we have A = he/( 1 + 3;sS); for a solid body A = 48. 

Inside the arc the stream function satisfies equation ( 2 e )  and the required 
solution is of the form ffr)  sin 8 and is non-singular at r = 0. It may be written 
without loss of generality in terms of 6 as 

P -- - A 2 (aC2 - b)[sin 0, 
p2ua P 2  

Y 
(47) 

where a and b are arbitrary constants. Both equations (44) and (47) are special 
cases of the general Stokes solution of the form f ( r )  sin 8. 

The solution for the pressure outside the arc follows from (31), (34) and (38) as 

D cos0 p = p  --__ 
O D 2 n - r '  

where the term involving pl is omitted since it is of higher order in A. Inside the 
arc the pressure is obtained from ( 2 4  and since A is given by ( 2 9 )  and the viscous 
term gives a constant pressure gradient in the x-direction, the solution is 

where po is the unknown pressure at the centre of the arc. 

5.2. Boundary conditions at the arc periphery 
We now apply boundary conditions at  the arc periphery. Continuity of vo,pv, 
and leads to the following expressions for a,  b and c in terms of S: 

3 [ (1 +;) - ( 1  - ;) 61 
71 n = 

I- 

P1 72Pl l+-+2--  
P2 7lP2 

9 

71 7lP2 b =  
l + - + 2 - -  P1 72P1 

P2 7lP2 

( 1 + ;) - ( 1 - E) 6 
I ? =  " 

P1 72Pl l + - + 2 - -  
P 2  7lP2 

Continuity of ( - p  + T ~ , )  then gives 
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these two integral relations serve to determine po  and B,. The pressure itself is 
discontinuous, and so is the vorticity. The relations for a, b and c show that the 
flow near and within the arc is determined by the viscosity ratio q2/vl, the density 
ratio p1/p2 (both of which depend ultimately on the ambient conditions) and the 
parameter 6. The effect of the final boundary condition on the flow at the periphery 
would be to specify 6 in terms of ~ ~ / y ~  and p1/p2. 

It is illuminating to consider what the foregoing expressions imply with regard 
to the nature of the arc periphery. This can be done conveniently by defining two 
non-dimensional parameters which represent the extent to which the flow is 
slipping around the periphery and the extent to which it is crossing the periphery. 
We call these parameters the slipperiness and the porousness, denote them by C 
and Il, and define them by 

, (55 )  
I; = ( - ve)r=i), e=gn 

U 

These are special definitions appropriate to the simple symmetrical flows under 
discussion, and more general definitions suitable for any slippery porous body 
could be devised. C and IT are connected with c and d by c = 1 - &(C - n ) / A  and 
d = 1 - &(C + rI)/A. Hence, from (43) and the definition of E ,  A may be written as 
[l - $(C + II)] &, which shows that the drag of a slippery porous body is equal to 
a factor [l - &(Z + II)] times the drag of the corresponding solid body. The drag 
of a slippery porous body is therefore zero if the slipperiness and porousness 
satisfy the condition C + II = 2 .  The continuity of tangential velocity, normal 
mass flux and tangential stress at the arc periphery leads to the following expres- 
sions for C and II in terms of 6: 

C = A  (57) 

P2 9lP2 

2-1 l+--2 
I I = A  ” (  P2 3 1 ? ] .  

(l+Y+&P?) P2 91PZ (1.;) 

Some flow properties of various well-known types of body may be recovered 
from equations (57) and (58) by specifying, in the first place, relevant material 
properties of the bodies. A solid body may be regarded as having infinite vis- 
cosity, so q2/q1 = 0 and hence 

C = “/(1+ P11P2)I 8, rI = “(PI/P2)/(1 +Pl/P,)l6 
withp,/p, arbitrary. But a solid body is obviously non-porous, so II = 0 and hence 
6 = 0 and so it follows that C = 0;  that is, the no-slip condition applies at the 
surface of a solid body. Inside a cavity the density is zero, so p1/p2 = 0 and hence 
C = A26, II = 0. Unless a further condition which specifies 6 is applied the 
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slipperiness and hence the drag of a cavity remain arbitrary. For a fluid bubble, 
with arbitrary values of viscosity and density inside and outside the bubble, the 
condition of zero porousness applies and then Il = 0 leads to 6 = (rZ/a1)/( 1 + az/al) 
with I; = A2(rz/7j9/( 1 + a2/q1) = A26, which latter result is seen to be a general 
result for non-porous bodies. 

Since, in particular, the appropriate boundary conditions for a solid body can 
be derived by first specifying a material property and then invoking the non- 
porous condition, the no-slip condition following as a consequence, it seems 
reasonable to expect that a similar situation exists for an arc and that the 
boundary conditions for an arc can be obtained by specifying a material property 
plus a further flow condition. It is this last condition which is unknown and which 
we leave open. 

With regard to material properties, whereas in the above discussion of special 
bodies q2/a1 and p1/p2 are regarded as independent of each other, for an arc they 
are not independent since they are both functions of the ambient temperature. 
Also, by their nature as mean values aZ and p1 cannot be zero and q1 and pz 
cannot be infinite, and so it follows that neither r2/r1 nor pl/p2 can be zero. Hence, 
in the present mathematical model at least, the cases of the solid body and the 
cavity are excluded from the arc. 

5.3. Examples of possible $ow patterns 
In order to illustrate the effect of the final boundary condition on the flow near 
an arc we assume the gas to be perfect with constant specific heats, constant 
Prandtl number and thermal conductivity proportional to temperature, and 
take mean values outside the arc at  the ambient pressure and the mean tempera- 
ture. Then it may be shown that 

r_z ;(l+$). 
71 Pz 

(59) 

We consider eight examples of possible flow patterns, the relevant mathe- 
matical details of which are given in table 1 below; for completeness, the values 
of 6 relevant to the various examples are given in their general form in terms of 
q2/q1 and pJp2 rather than in terms of T,/?. The flows are illustrated, for TJ? = 0 
and Tm/? = 1, in figure 2. It is significant that all the conditions give 6 = O( 1) in 
general, although 6-+m as Tm/?+ 1 in example 1 and 6-t -m as Tm/@-+ 1 in 
example 8. In  general, then, A = O(&), but in the above cases the drag is zero, 
I; and IT being O(1). Otherwise I; and II are O(A) throughout. Example 8 is an 
oddity, however, because the drag becomes infinite when T,,/@ = 1 - 2~ . . . so 
6 = - l/(+e). Example 2 is the only case in which the final boundary condition is 
natural rather than contrived in the sense that some flow feature is enforced, 
although examples 5 and 7 are realistic cases in themselves (being the cases of the 
fluid bubble and the porous body respectively). Examples 1 and 2 show direct 
flow through the arc without stagnation points. Examples 3-5 cover the whole 
range of flows in which the arc has an internal closed streamline. Examples 6-8 
all show the main flow diverted away from the arc. It is interesting that when a 
closed streamline exists it is a circle and therefore an isothermal. The effect of the 
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final boundary condition predominates over the effect of T’lp, being a maximum 
when TJP = 1. Note that negative slipperiness and negative porousness are 
possible and imply reversal of flow direction around and across the periphery 
respectively; these do not occur at the same value of 8. 

Ex. 
1 

2 

3 

4 

5 

6 

7 

8 

Description 
The flow inside the arc 

periphery is uniform 

The pressure is con- 
tinuous across the 
arc periphery 

The centre of the arc 
is a stagnation point 

The flow has a closed 
streamline inside 
the arc periphery 

The periphery is a 

The arc is the slippery 

streamline 

porous body 
equivalent to a 
solid body 

The streamlines are 
normal to  the arc 
periphery 

The %ow just  outside 
the arc periphery 
is uniform 

Condition 
a = O  

c = ;  

b = O  

r I = o  

S = O  

c = o  

c = l  

TABLE 1 

Value of 6 

(I  + E M 1  -9 
2 ( 1 - 3  

;(3+;) 

1+p‘J!?” 
Pz TlP2 

2 + 3 - - - -  112 T2Pl 
111 TlPZ 

71 ”/( 1 +;) 
0 

The range of flows covered by the present solution includes many which have 
been conjectured in the past: examples 1, 2, Broadbent ( 1 9 6 5 ~ ) ;  example 3, 
Goldsworthy (private communication); example 4, Thiene, Chambers & 
Jaskowsky (1961), Broadbent (private communication); example 5 ,  Roman & 
Myers (1966), Kuethe, Harvey & Nicolai (1967), Hodnett (1967); examples 6, 7, 
8, Schrade (1965 and private communication). This work therefore shows clearly 
how the mathematical difference between these various conjectures lies in the 
form of the final boundary condition at the arc periphery. 

Two further comments seem worth recording. First, an internal axial flow 
through a straight arc (which, if a uniform flow, could be accommodated simply 
by introducing radial and azimuthal components of electric field to cancel the 



Electric arc in a transverse magnetic jield 703  

induced radial and azimuthal currents) somewhat in accordance with the ideas 
of Kuethe et al. (1967) would tend to lead to the non-porous periphery of example 
5. Secondly, whatever the flow pattern for a straight arc proves to be, the other 
flow patterns might be appropriate for columns of different curvatures, in which 
the induced self-magnetic field due to column curvature modifies the applied 
magnetic field (Schrade 1965). 

6. Electric characteristic 
In  order to derive the electric Characteristic it is necessary to introduce a 

relation between the electric conductivity and the heat-flux potential. We take 

q1 = (2 /2 .405)2a($0-$) ,  (60 )  

where a is an empirical constant; the number 2.405 represents the first zero of the 
Bessel function J,. It may be shown that this choice of g1 enables the correct 
electric characteristic for a linear c-4 relation, which is all that is required for 
an arc of low power gradient, to be obtained by the present approximate method 
in which a constant conductivity is assumed. The result ( 2 2 )  for the temperature 
at  the centre of the arc and the result (24 )  for the total current are not, however, 
those given by a linear v-$ relation. 

We now define the non-dimensional parameters J and K by 

and note that when the gas composition is fixed and the ambient temperature is 
constant then, provided $ (and p )  are regarded as independent of ambient 
pressure pa,  J is proportional to Em I and K is proportional to p t  U21/Em. It 
follows from (25 ) ,  (61 )  and (16 )  that 

J = N ,  (63)  
and from ( 2 4 ) ,  (60 ) ,  (62 ) ,  (23 )  and ( 1 7 )  it  follows that 

K = NX. 
Hence, by using (18 )  in combination with ( 6 4 )  and ( 6 3 )  the electric characteristic 
is given in the form K = Jexp  ( -  l/J). (65 )  
The electric characteristic of a low power arc in a magnetic field is therefore 
precisely the same as the electric characteristic of a wall-stabilized static arc. 

It is more usual in practice to regard the electric characteristic as a relation 
between the electric field and the current, and this can be obtained in non- 
dimensional form from (65 )  by using the non-dimensional parameters P and G 
defined by F = (J/K)*, G = (JK)*. When the gas composition is fixed and the 
ambient temperature is constant, F is proportional to E,lpco U and G is pro- 
portional to p a  U I .  
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The non-dimensional parameters J ,  K and F, G are established here for arcs 
of low power and may be expected t o  be significant for arcs of higher power also. 
The electric characteristic will not then be given by (65), however, as demon- 
strated by Lord (1967). Parameters of this form were previously given by Lord 
( 1964) and reported by Broadbent ( 1965 b). The previously-suggested similarity 
law that Em I is a function of p z  U2I/E, (in the absence of radiation) is therefore 
confirmed in the present work for arcs of low power gradient. 

7. Magnetic characteristic 

parameter L defined by 

and note that when the gas composition is fixed and the ambient temperature is 
constant L is proportional t o  B ,  I / U .  It then follows from (54), (66) and (41) that 

To determine the magnetic characteristic we introduce the non-dimensional 

(66) L = B, I/8ny2 U 

L = A, (67) 

and hence from (46), ( 1 7 ) ,  (18) and (63) the magnetic characteristic is 

(68) 
1 L =  

(1/J) + 1 -log P@+ 6’ 

The magnetic characteristic is therefore not determined to  the extent that 6 is 
unknown, and it follows that the magnetic characteristic is dependent on the 
final boundary condition a t  the arc periphery. Since J is a function of K from 
(65), i t  follows that L is a function of K ,  and depends on Pr, and 6 also. 

It may be noted that if 6 = O( 1)  then equation (68) may be expanded as a series 
inpowersof,J,giving L = J-( l - logPr,2+6)J2+. . . ,  andfrom (61) and(66) i t  
follows that the first-order result L = J may be written as 

this is of the same form as a result given by Otis (1  967) with a different coefficient 
of proportionality between B,/Em and U .  

The magnetic characteristic may be expressed as a relation between the mag- 
netic field and the current by defining the non-dimensional parameter H by 
H = L/G and then by making the appropriate substitutions in (68) to obtain the 
relation between H and G. When the gas composition is fixed and the ambient 
temperature is constant, H is proportional to  BJpm U2. 

A parameter of the form of L was previously given by Lord & Broadbent 
(1965) and reported by Broadbent (1965b), and a similarity law, BmI/U is a 
function of p: U21/E,, suggested. The present work confirms this law for arcs 
of low power gradient, provided the ambient temperature is kept fixed so that 6 
is unchanged, in spite of its showing simultaneously that the conception of an 
arc as a solid conductor, on which the previous law was based, is an illusion. 
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8. Connexion with experiment 
An analysis (Lord 1967) of the experimental electric characteristic of a hori- 

zontal free-burning arc in air and nitrogen at  one atmosphere pressure, given by 
King (1961), indicates that there exists a range of power gradient (roughly from 
4 x 103 W/m to 6 x lo3 W/m in the case of the free-burning arc) in which the 
discharge is in thermal equilibrium and the method of low power gradient applies. 
Moreover, the analysis for the free-burning arc when used in conjunction with a 
similar analysis for the experimental characteristic of the wall-stabilized arc in 
nitrogen at one atmosphere, given by Maecker (1959), enables certain mean 
properties of the gas outside the arc to be deduced (Lord 1967). It is suggested 
that a similar situation may exist for the arc in a transverse magnetic field, and 
that experiments of the kind performed by Roman & Myers (1966), but at lower 
levels of current, velocity and magnetic field (say, currents about 1 amp, ve- 
locities of order 1 mlsec and fields of order Wb/m2), might provide significant 
evidence on arc structure and also useful information on effective gas properties. 
(Note the distinction between the previous choice of mean gas properties in 
order to provide illustrative examples and the present suggestion for a 
method of deducing mean gas properties from suitable experimental measure- 
ments.) It is interesting that the experiments of Roman & Myers (1966) already 
indicate that an arc of low power is of circular cross-section and that the heat 
transfer from such an arc is similar to that from a solid body of the same 
dimensions, which are both features of the present theory. 

The proposed method of analysis of experimental characteristics is as follows. 
The electric characteristic, equation (65), may be written as 

where 0 = 4746- q5,) and 5 = (2/2.405)2a(6- 4,); hence a graph of log (E,/U)2 
against (l/EaI) may be expected to yield first 0 and then 67r(4~~/e~Pr,p,)~.  
The magnetic characteristic, equation (68), may be written as 

hence a graph of U/B, I against ( l/Em I) may be expected to yield first r2 since 
is known, and then 1 -log PrT2 + 6. The value of 0 should check with the 

value deduced from the wall-stabilized and free-burning arcs. The other values 
may be combined with the value of 6 obtained from the wall-stabilized arc and 
with a relation connecting v2/p2 and Pr, obtained from the free-burning arc to 
give p2, Pr, and 6. Unless y1 and p1 were deducible also the value of 6 would not 
itself resolve the difficulty of the flow pattern near the arc, for which flow visual- 
ization techniques would be required. However, it should provide some indica- 
tion, since the examples cited show that there is a general correspondence 
between the value of 6 and the flow pattern whatever the values of r2/r1 andpl/p2; 
from example 2 to example 7 ,  for instance, IS varies between 1 and -5  when 
r2/r1 = pl/p2 = $ and between % and - 4 when q2/vl = p1/p2 = 1. 

45-2 
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9. Conclusion 
A theory, which yields detailed distributions of temperature, magnetic field, 

velocity and pressure, both inside and outside the arc, is given for an arc in a 
transverse magnetic field. It applies when the arc has low power gradient. 
Although the theory involves several artificial features, it is well suited for use 
in conjunction with experimental measurements. 

As far as the overall heat transfer and the electric characteristic of the arc 
are concerned, the arc in a transverse magnetic field is equivalent to  a wall- 
stabilized arc in a circular tube of appropriate radius. The radius of the equivalent 
tube is regarded as the natural length scale for the arc in a transverse field; it 
decreases with increase of ambient pressure and flow velocity. 

The problem of the flow pattern near the arc is highlighted but not completely 
resolved, a major question about the flow near the arc periphery being left open. 
It is argued that this attitude is reasonable in the absence of detailed experi- 
mentd results on arcs of low power gradient. Although there are some points of 
resemblance between an arc and a solid body, i t  seems better to regard an arc 
as a slippery porous body. The drag and the magnetic characteristic of the arc, 
and its slipperiness and porousness, depend on the open flow condition, the 
resolution of which is the most needed improvement of the present theory. 

Developments of the theory may be attempted by discarding the assumption 
of constant gas properties, preferably one a t  a time in the order of electric con- 
ductivity (Hodnett 1967), density outside the arc and viscosity outside the arc 
and seeking the modified first-order solution. Also i t  may be extended by re- 
taining the use of constant gas properties and seeking the next higher-order 
solution of the full equations of motion analytically in the manner of Kaplun 
(1957) and Proudman & Pearson (1957), or numerically following Dennis & 
Shimslioni (1964) and Dennis & Smith (1964). 

However, there is a limit to  the extent to which the methods of low Reynolds 
number theory may be exploited and progress towards a satisfactory theory of 
arcs of higher powers will probably be slow. I n  the meantime the non-dimensional 
parameters involved in the low power theory, which may be expected to be sig- 
nificant for arcs of higher power also, provide a useful means of analyzing experi- 
mental results for high power arcs. Being based on the theory of a uniform column 
they apply only to long arcs, but they may be combined with the parameters of 
Yas’ko (1964) and Dautov & Zhukov (1965), which are particularly suitable for 
 short^ arcs (see Adams, Guile, Lord & Naylor (1967) also), t o  make possible 
eventually the presentation in similarity form of the experimental results for 
arcs of any length. 

My thanks are due t o  Professor F. A. Goldsworthy of Leeds University and 
Dr P. F. Hodnett, formerly of Leeds University, for many stimulating and fruit- 
ful discussions during the course of this investigation. 

This paper is a modified version of R.A.E. TR 67086 and is reproduced by 
permission of the Controller, Her Majesty’s Stationery Office. 
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